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Abstract: The problem of identifying an unknown pollution source 
in polluted aquifers, based on known contaminant concentrations 
measurement in the studied areas, is part of the broader group of is-
sues, called inverse problems. This paper investigates the feasibility 
of using Artificial Neural Networks (ANNs) for solving the inverse 
problem of locating in time and space the source of a contamina-
tion event in a homogeneous and isotropic two dimensional domain. 
ANNs are trained in order to implement an input-output relation-
ship which associates the position. Once the output of the system is 
known, the input is reconstructed by inverting the trained ANNs. 
The approach is applied for studying a theoretical test case where the 
inverse problem is solved on the basis of measurements of contami-
nant concentrations in monitoring wells located in the studied area. 
Groundwater pollution sources are characterized by varying spatial 
location and duration of activity. To identify these unknown pollu-
tion sources, concentration measurements data of monitoring wells 
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are used. If concentration observations are missing over a length of 
time after an unknown source has become active, it is more difficult 
to correctly identify the unknown pollution source. In this work, a 
missing data scenario has been taken into consideration. In particu-
lar, a case where only one measurement has been made after the pol-
lutant source interrupted its activity has been considered. 

Introduction
Groundwater represents an important resource for the production 

of drinking water. However, groundwater is exposed to man-made 
pollution. When groundwater is polluted, the restoration of quality 
and removal of pollutants is a very slow, hence, lengthy, and, some-
times, a practically impossible task. As a consequence a manage-
ment aimed at protecting the groundwater quality and at safeguard-
ing the groundwater resources has a vital importance for life support 
systems.

Groundwater contamination, in some cases, may result from 
pollutions whose origin is found at times and places different than 
where the contaminations have been actually noticed. Such situa-
tions require the development of techniques that allow the identi-
fication of these unknown pollution sources. The determination of 
the initial conditions of pollution is of considerable interest in the 
framework of the implementation of the European Union Directive 
2004/35/EC: this directive concerns environmental liability with re-
gard to the prevention and compensation of environmental damages, 
based on the affirmation of the principle of polluter-payer.

The problem of determining the unknown model parameters is 
usually identified as “inverse problem”. Solving the inverse problem 
is the main goal of modelling groundwater flow and contaminant 
transport. With respect to the resolution of the inverse problem, in 
this work we propose the use of an innovative ANNs based method-
ology for solving the inverse problem of locating in time and space 
the source of a contamination process in a homogeneous and iso-
tropic two dimensional domain. The identification and remediation 
of polluted aquifers represents nowadays an important challenge in 
groundwater resource management. In order to efficiently manage 
the groundwater quality, it is fundamental to know pollution source 
characteristics such as location, magnitude and duration of the activ-
ity. Inaccuracies/inadequacies in determining the pollution sources 
may lead to inefficient or unsuccessful management/remediation ef-
forts. Information regarding the pollution sources is also necessary 
and useful for addressing the judicial issues of responsibility and 
compensation for environmental damage.

In the case presented in this paper, the inverse problem is solved 
on the basis of measurements of contaminant concentrations in mon-
itoring wells located in the studied theoretical area. During the last 
decade, there has been seen a significant activity in ANNs applied 
to various hydrogeological problems such as groundwater model-
ling, modelling of hydrogeological parameters, modelling of various 
kinds of aquifers contamination, water quality modelling. Several 
studies have been dedicated to the development of different models 
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Fig. 2: Study site.

Tab. 1: theoretical aquifer features.

Fig. 1: distribution of the pollutant sources and the monitoring cells in the 
domain

for solving the inverse problem, however works using the ANNs ap-
proach are less popular, Among these latest, one can highlight Rizzo 
and Dougherty (1994), Zio (1997), Gümrah et al. (1999), Mahar & 
Datta (2000), Fanni et al. (2002), Rajanayaka et al (2002), Sciun-
tu (2004), Singh and Datta (2006), Zhiqiang et al. (2006), Bashi-
Azghadi et al. (2010), Foddis et al (2012).

In this work, in order to identify the spatial location (X,Y) and 
the duration of the activity (T) for a theoretical unknown pollu-
tion source, a new approach is applied. Several ANNs are trained 
to solve the direct problem, presenting as input the spatial location 
(X,Y) and the duration of the activity (T) for an unknown pollution 
source and  as desired output, the measures of contaminant concen-
trations acquired in the monitoring wells at the current time t. After 
the training phase, the trained ANN is inverted in order to solve the 
inverse problem. Starting from the contaminant concentration in the 
monitoring wells, the unknown contaminant source characteristics 
are found. Thanks to a drastic reduction of the input/output data the 
computational time is strongly decreased. Moreover the implement-
ed method is useful not only to identify the location and duration 
activity of unknown pollution sources, but also to bound the study 
area defining the best location of the monitoring wells in the domain 
and to optimize the investigation costs.

Materials and methods
In the first step, several ANNs are trained to solve the direct prob-

lem. In this part of the procedure, the networks are trained, by means 
of a set of examples, to associate the contaminant concentration in 
monitoring wells to the position and duration of pollution sources ac-
tivity. The input patterns are the features describing spatial position 
and activity duration of the pollution sources. The output patterns 
are contaminant concentration observation data at given monitoring 
wells. After the training, the ANN generalization capability can be 
exploited to estimate the contaminant concentration in monitoring 
wells corresponding to a new pollution source.

In the second step, the trained ANN is inverted in order to solve 
the inverse problem. On the basis of values of known contaminant 
concentrations in monitoring wells, the pollution sources position 
and the activity duration can be identified.

In the following paragraph the methodology is deeply described.

ANN pattern construction: flux and transport model of 
the theoretical aquifer

ANNs are trained by using a set of patterns created by means of 
the flux and transport contaminant modelling software TRACES 
(Transport of Radio ACtive Elements in the Subsurface [Hoteit et 
al.(2004)]). As documented by Hoteit et al.(2004), TRACES per-
forms the simulation of flow and reactive transport in saturated po-
rous media. It is based on mixed and discontinuous finite element 
methods for solving hydrodynamic state and mass transfer prob-
lems. The patterns describe, for a theoretical hydrogeological basin, 
both spatial location and duration of activity of the contamination 
source and the set of contaminant concentrations measurements in 
the monitoring wells.

The theoretical hydrogeological basin and its principal features 
have been defined as reported in Table 1.

In order to solve the partial differential equations by means of the 
numerical model, a regular quadrangular two‑dimensional mesh is 
superimposed in the whole domain for a total of 50 cells in the 2D 
directions (see Figure 1). Each cell is large 20×20 m2.

ANNs patterns are constructed through a suitable number of hy-

Theoretical aquifer type: confined and isotropic aquifer system 
composed by one horizontal layer characterized by only one 
stratigraphic unit whit a constant thickness.
It is delimited by no-flow boundaries on the North and South 
sides.

Domain dimension 1000*1000m2

Hydraulic head on the west boundary 9 m

Hydraulic head on the east boundary 8 m

Horizontal hydraulic conductivity [ko] 0.0001 m/s

Effective porosity 10%

drogeological scenarios that take under consideration the restrictive 
hypothesis of groundwater contaminated by a single generic conser-
vative pollutant injected in a single point (pollutant source). Overall, 
40 constant punctual pollution sources with a constant contaminant 
concentration of 100 μg/m3 were uniformly distributed in the aquifer 
domain (see Figure 1). It is also assumed the presence of a pumping 
well with a constant pumping rate (0.0012 m3/s) and the pumping 
start from the beginning of the simulation. No variation of the initial 
parameters of the model during the simulation time and no recharge 
rate are applied to the aquifer. The initial contaminant concentra-
tion, in the domain, is assumed equal to zero. Training patterns are 
constructed by simulating the 40 different pollution sources for 3 
timing of activity source duration (10, 20 and 30 years), resulting in 
40×3 = 120 samples maps of contaminant distributions. The samples 
obtained from the simulation model are the matrix of contaminant 
concentration for 50 monitoring cells distributed in order to cover 
the entire basin area of the domain (Figure 1).



17

AQUA mundi (2013) - Am07054: 015 - 021 DOI 10.4409/Am-053-13-0048

Through TRACES, the trend of the piezometric head and contam-
inant concentrations in the domain in stationary state is developed 
(Figure 2)

Fig. 2: hydraulic head and contaminant concentration distribution for a ge-
neric pollutant source after 10 years activity at the top of the aquifer domain.

The huge amount of data carried out by each time step of simu-
lation is not suitable to be inputted in an ANN. Therefore, feature 
extraction techniques have been implemented to reduce data dimen-
sionality. Several feature extraction procedures have been compared 
in order to choose the best one, in this affecting size and structure 
of ANNs.

Multi Layer Perceptron (MLP) network model
An ANN consists of a number of interconnected processing ele-

ments (Perceptrons) called neurons, which are logically arranged in 
two or more layers and interact with each other through weighted 
connections. In particular, the Multi Layer Perceptrons (MLPs) fall 
within the class of methods for function approximation by means of 
combination of elementary functions (Taylor, Fourier series, etc.). 
In general, MLPs could have whichever number of layers, but it has 
been demonstrated that an MLP with only one intermediate layer 
(hidden layer) is a universal approximator (Cybenko, 1989). For this 
reason throughout the paper, the MLP are considered having only 
one hidden layer without further specification. MLPs have the two-
fold advantage of using transcendent functions and determining the 
parameters by means of examples. This second property makes pos-
sible to develop a model of the system without an analytical formal-
ization but simply on the basis of a suitable set of input/output pairs 
of example patterns. The features of the developed ANN depend 
on the nature of the problems analysed and there are no theoretical 
guidelines for determining the best way out. The model is specific to 
the system under study and it cannot be built a priori. The training 
of the ANN consists in applying a learning rule that modifies the 
weights of the connections on the basis of the difference between 
the calculated and the desired output of the network. The aim of the 
training is to make the ANN able to generalize the acquired infor-
mation, i.e. to give the correct output even for examples not included 
in the training set. This aspect is crucial for the application described 
in this work, because the assumption is to reconstruct the input by 
inverting the trained ANN. In practice, the aim of training is ab-
stracting the input-output relationship which generated the examples 
of the training set and implementing it into the ANN. After that, the 

ANN is inverted to solve the inverse problem by fixing the output 
and reconstructing the corresponding input of the ANN.

Input data reduction
The ANN input data are the positions (X,Y) and the activity dura-

tion (T) of the pollution sources for the 120 hydrological scenarios. 
These correspond to 40 sources for 3 timing considered. The three 
input parameter (X,Y,T) are pre-processed by normalizing so that 
they fall in the interval [-1,+1]. The algorithm is presented in Equa-
tion 1.
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where: np  is the normalized input value, p  is the input, maxp
and minp  are maximum and minimum values respectively. The 
pre-processed input patterns matrix has size 3×120.

Output data reduction
Thanks to TRACES a total of 120 matrices of concentrations at 

the monitoring cells have been generated, corresponding to as many 
scenarios. Each component ai,j of the matrix corresponding to a spe-
cific scenario represents the concentration value at the well j and 
the time i. In the studied case, the total absence of complete break-
through curves of concentration time series at all the time steps is 
hypothesized. So, for each one of the 50 monitoring cells, only one 
observation is taken into consideration, in particular the concentra-
tion of the final time t is taken. Therefore, each scenario is described 
by a 50 values vector, corresponding to the 50 monitoring cells. 
These cells correspond to as many hypothetical monitoring wells. 
However, these vectors are too large to be subsequently processed 
through the ANN, requiring too many examples and a large network 
with a lot of hidden neurons. In this way, the ANN becomes too 
big and it may lose its specific feature consisting in the calculation 
speed. Moreover, the number of 50 hypothetical wells is too large 
for a small domain such that taken into account. For these reasons, 
a procedure has to be adopted to select the most suitable monitor-
ing cells, in order to reduce both the size of ANN and the cost of 
measurements in applying the method to a real case. Several data 
pre-processing methods can be used to this purpose. The scheme in 
Figure 3 represents the procedure applied in this work.

Fig. 3: sketch of the monitoring wells selection procedure.
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First the 120 vectors are joined to make a unique matrix of output 
patterns. The dimension of this matrix is 50×120. 

Then the correlation of each one of the 50 monitoring cells with 
each input is evaluated, obtaining three distinct classifications of the 
50 monitoring cells. Only the five cells more correlated with each 
input are kept into consideration. Based on this initial reduction, 
at most 15 monitoring cells are kept (Figure 4), the number being 
lower when the same monitoring cells is within the first five in more 
than one classification. So the output patterns matrix size becomes 
15×120.

Fig. 4: distribution of the 15 monitoring cells selected on the basis of correla-
tion with inputs..

Fig. 5: distribution of the 8 monitoring cells selected on the basis of thje ANNs 
trainings..

The number of hypothetical monitoring wells is still too large. In 
order to further reduce this number, an iterative procedure based on 
the application of an ANN was developed. ANNs are over-trained 
with the training set made up of all the patterns, and then the correla-
tion between the inputs and the calculated outputs are evaluated. The 
monitoring cell corresponding to the lowest correlation is removed 
together with the associated output neuron. After this, the reduced 
ANN is trained. The iterative procedure ends when the minimum 
value of correlation is below a prefixed threshold.

For each training, the number of the hidden neurons is determined 
by means of a trial and error procedure by performing several train-
ings and assuming a growing number of hidden neurons. For each 
training phase, the output layer becomes smaller, and consequently 
the hidden layer decreases too. For a reason which will be clarified 
below, the number of hidden neurons must be less or equal to the 
number of output neurons. At the end of the iterative procedure, the 
number of monitoring wells has been reduced to 8 (Figure 5). 

As a consequence, the dimensions of the output pattern matrix 
are 8x120, the rows corresponding to the monitoring wells and the 
columns to the scenarios. As for the input matrix, the output matrix 
has been normalized in the interval [-1,+1]

ANN Training
The 3 inputs‑8 hidden‑8 outputs structured MLP is initially 

trained by means of the Levenberg-Marquardt (LM) algorithm to 
solve the direct problem, namely associating the contaminants con-
centration in monitoring wells to the time-space coordinates of the 
pollutant source. The trained MLP is subsequently inverted to solve 
the inverse problem, namely deriving the time-space coordinates 
of the unknown pollutant source starting from the measurement of 
contaminants concentration in monitoring wells.

The training procedure consists in modifying iteratively the con-
nection weights of the ANN, in order to minimize the mean squared 
error (error function) of the output with respect to the desired one. 
In particular, LM algorithm performs an approximated second‑order 
minimization of the error function. In an iteration the error function 
with respect to the whole training set is calculated and a consequent 
small modification of connections weights is applied. The operations 
performed during a single iteration is called epoch.

The training of the ANN is a critical part of the proposed process. 
A special attention has to be paid to guarantee the generalization 
capability of the trained MLP, namely the capability to solve, with 
the desired rate of approximation, the direct problem for cases out of 
the training set. To this end it is important both to have a meaningful 
training set and to avoid overfitting. The first requirement can rep-
resent a difficulty when the available examples are limited or, as in 
this case, generating a consistent number of patterns is too costly. In 
such cases, a solution can be represented by the Leave one Out Cross 
Validation (LOO) technique, which offers a way to mitigate also the 
overfitting, which in general is avoided by adopting the cross‑valida-
tion method. This consists in calculating, during the training phase, 
the error made by the MLP on a validation set, which is distinct from 
the training set. When such error gets to rise the training is stopped.

In the LOO, the examples patterns are divided in p sets, where p 
is the number of examples. Each set is divided in two subsets: one 
composed by p‑1 examples is used as training set and the remaining 
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Fig. 6: Structure of the MLP.

example is used as validation set. Therefore in this work, the training 
set is made of 119 examples. One by one, each example is used as 
validation set, so that an overall number of 120 trainings have been 
performed. This preliminary study is performed to establish an opti-
mal number of training epochs. In this work, a number of 100 epochs 
has been deduced by this analysis. This number of epochs has been 
then used as a standard for all trainings in this work.

In the studied case, the LOO procedure is not used to train the 
network that will be used in a particular case, but only to estimate 
the generalization capability of the 120 trained networks. If one wish 
to consider a new source not included in the 120 patterns, all the 
patterns will be used for the training set and the new case will be 
used for the test set. The developed methodology allows us to reach 
the reasonable presumption that the error for the new case will not 
be greater than the errors experienced in the 120 networks already 
trained.

Inverse problem solution
Given an MLP trained as described above, the inversion proce-

dure has to be applied to characterize the unknown pollution source.
The MLP (Figure 6) realizes a relationship between input and out-

put patterns described by the following algebraic equations system:
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Where: x  is the input of the network, 
1

W  is the weights matrix 
of the input layer, 1b  is the bias vector of the input layer, y  is the 
input of the hidden layer, h  is the output of the hidden layer, )(⋅σ  
is the hidden neurons logistic activation function, u  is the output of 
the network, 

2
W  is the weights matrix of the output layer, 2b  is 

the bias vector of the output layer.

On the basis of the known output of the system, which derives 
from a set of measurements in the monitoring wells at a certain time 
, the corresponding input can be calculated exploiting the method 
described in (Carcangiu et al, 2007; Fanni et al, 2003).

During the inversion process, as explained below, the difference 
between the calculated input and the desired input is considered. 
On the basis of the third equation described in the equation system, 
starting from the output u, the vector h can be determined. Provided 
that the matrix 

2
W  is full rank, and taking into account that in the 

present case such matrix is squared, the solution corresponding to 
the minimum sum squared error is equal to: 
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1
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More in general, the matrix 
2

W  is rectangular, so it cannot be 
directly inverted. In order to guarantee the uniqueness of the solu-
tion, the rows (number of output neurons) must be more than the col-
umns (number of hidden neurons). In this case, the equations system 
results overdetermined and the uniqueness is ensured by assuming 
the solution which corresponds to the minimum mean squared error. 
Such solution can be found by solving the following modified equa-
tions system, whose coefficients matrix is squared. 

	
	

( )2222
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Even in this case, the uniqueness is conditional on the fact that the 
matrix 

2
W  is full rank.

The second equation in (2) states a biunivocal relation between y 
and h, therefore the vector y is:

	
	

( )hy 1−= σ
			   (5)
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Finally, provided that the matrix 
1

W  is full rank, the input pat-
tern x can be calculated as: 

	
( ) )( 11

1

11
byWWWx TT −⋅⋅=

−

		  (6)

where the mark T represents the transposition operator. The de-
sired source position and duration of activity have been obtained by 
backward applying the pre-processing of the vector x  obtained by 
inverting the ANN.

Results and discussion
The described procedure has been applied to the problem de-

scribed in section 1.1. The results show very good performances in 
locating the pollutant source, obtaining correct results in the 67% 
of the cases for the X coordinate and in the 59% of the cases for the 
Y coordinate. In the most of the cases the identification error is less 
than one cell size (20×20 m2). On the other hand, the maximum error 
is less than the size of two cells. Figure 7 shows the hydrogeological 
domain with spatial coordinates X and Y corresponding to the 40 
pollution sources positions. The black circles represent the correct 
source positions while the blue, red and green circles are the posi-
tions calculated by means of the MLP inversion. The Figure 7 corre-
sponds to the 40 pollution sources, with 10, 20 and 30 years activity 
time respectively.

Fig. 7: real and calculated position of the 10, 20 and 30 years activity pollut-
ant sources

Fig. 8: duration activity approximation of the ANNs.

Tab. 2: performance of the inversion of the MLP.

Table 2 illustrates the percentages of success in identifying the 
unknown pollution sources. The localization of the source is consid-
ered 100% correct if the error is less than the side of the cell (20 m). 
The prediction of the activity duration is considered 100% if the er-
ror is less than one year.

Patterns results examples %

X,Y,T 100% correct 14

T 100% correct / X,Y error < 20m 40

T 100% correct / X,Y error > 20m 17

T error < 6 years / X,Y error < 20m 23

T error < 6 years / X,Y error > 20m 6

The method proves to be suitable in predicting the position of the 
source, whereas less satisfying results have been obtained concern-
ing activity duration prediction, with 76% of correct answers. Con-
cerning 10 and 30 years as the duration of the sources activity of, the 
activity duration resulted to be wrong in only one case. Conversely, 
for the 20 years sources duration activity, the resulting wrong cases 
are 26 out of a total of 40. Anyway, the maximum error committed in 
time estimation is 5,26 years. In Table 3 the average and maximum 
errors for the three source parameters are reported. 

X  [m] Y  [m] Time  [years]

Em – mean error 14.19 14.33 0.70

EM – maximum error 39.17 39.82 5.26

Tab. 3: results related to the identification of the pollution sources features.

In most cases the MLP is able to correctly detect the duration of 
the pollution activity. This is probably due to the different dynamics 
of the pollutant processes depending on the distance of the source 
from the boundaries and from the pumping well.

Figure 8 shows the performance concerning duration activity pre-
diction. As one can see, for the sources duration activity of 10 and 30 
years, only one case is wrong. For the 20 years sources duration ac-
tivity, the wrong cases have been higher than the correct cases with 
26 wrong cases out of a total of 40 cases. Nevertheless the resulting 
mean error is equal to 2.66 years. The minimum and maximum er-
rors were respectively of 6 months and 5 years and 3 months. Vari-
ous trials performed to improve these results have shown that these 
results are strongly influenced by the instability of the MLP training.
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Fig. 9:  position of pollutant sources with ANN activity wrong.

Figure 9 shows the position of the sources where the prediction of 
duration activity is wrong. The positions are uniformly distributed 
throughout the domain and in general the position of the source is 
precise. Such result could suggest an interpretation of the anomalous 
performance in the case of 20 years activity duration. It seems that 
the procedure is able to locate the source, but probably the plume 
exhibits an irregular behaviour in the intermediate time, which is 
not the case in both the beginning, when the pollutant is strongly 
concentrated, and in the long time, when the plume reached a re-
gime distribution. In order to improve the performance of the system 
a greater number of examples should be generated of the midterm 
cases, but this is not the aim of the present work, which instead was 
to put in evidence the characteristics of the system which can affect 
the performance.

Conclusion
The presented inverse problem solution method allows estimat-

ing time-space coordinates of unknown contaminant sources. Vari-
ous source scenarios have been constructed in order to generate the 
examples used for training MLPs. These scenarios have been per-
formed by varying the pollutant source position and the duration 
of the source activity in the domain. The inverse problem has been 
solved using measurements of contaminant concentration acquired 
in the monitoring wells at a certain time t. In the presented case the 
method may be useful not only to identify the location and activity of 
unknown pollution sources, but also to delimitate the study area and 
optimize the investigation costs by determining the best monitor-
ing wells location. The proposed methodology has been developed 
for a simple theoretical case, however the method may be applied to 
real cases characterized by a high uncertainty in the aquifer forma-
tion because of its heterogeneity, single plume or multiple plumes, 
plumes overlapping, continuous or instantaneous sources and lack 
of information on the pollutant source behaviour. Therefore, further 
research to improve the method and extend its application is still 
needed.
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